mGRASP enables mapping mammalian synaptic connectivity with light microscopy
نویسندگان
چکیده
منابع مشابه
Improved synapse detection for mGRASP-assisted brain connectivity mapping
MOTIVATION A new technique, mammalian green fluorescence protein (GFP) reconstitution across synaptic partners (mGRASP), enables mapping mammalian synaptic connectivity with light microscopy. To characterize the locations and distribution of synapses in complex neuronal networks visualized by mGRASP, it is essential to detect mGRASP fluorescence signals with high accuracy. RESULTS We develope...
متن کاملFrom a meso- to micro-scale connectome: array tomography and mGRASP
Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced ...
متن کاملMapping synaptic cortico-claustral connectivity in the mouse.
The claustrum is an intriguing brain structure, featuring the highest connectivity per regional volume in the brain. It is a thin and elongated structure enclosed between the striatum and the insular cortex, with widespread reciprocal connections with the sensory modalities and prefrontal cortices. Retinotopic and somatotopic organizations have been described in the claustrum, and anatomical st...
متن کاملCorrelative Light Electron Microscopy: Connecting Synaptic Structure and Function
Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that...
متن کاملQuantitative polarized light microscopy of unstained mammalian cochlear sections.
Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Methods
سال: 2011
ISSN: 1548-7091,1548-7105
DOI: 10.1038/nmeth.1784